Low-temperature effect on the sterol-dependent processing of SREBPs and transcription of related genes in HepG2 cells.

نویسندگان

  • Ishaiahu Shechter
  • Peihua Dai
  • Mark A Roseman
  • Sita D Gupta
  • Bert B Boyer
  • Guimin Guan
چکیده

Lowering the growth temperature of HepG2 cells from 37 degrees C to 20 degrees C results in a 73% reduction in human squalene synthase (HSS) protein, a 76% reduction in HSS mRNA, and a 96% reduction in promoter activity of a secreted alkaline phosphatase-HSS reporter gene. A similar decrease in either mRNA or protein levels is observed for 3-hydroxy-3-methylglutaryl CoA reductase, farnesyl diphosphate synthase, the LDL receptor, and fatty acid synthase. All these proteins and mRNAs show either a decrease or a complete loss of sterol-dependent regulation in cells grown at 20 degrees C. In contrast, sterol regulatory element binding proteins (SREBPs)-1 and -2 exhibit a 2- to 3-fold increase in mRNA levels at 20 degrees C. The membrane-bound form of the SREBPs is dramatically increased, but the proteolytic processing to the nuclear (N-SREBP) form is inhibited under these conditions. Overexpression of the N-SREBP or SREBP cleavage-activating protein (SCAP), but not site-1 or site-2 proteases, restores the activation of the HSS promoter at 20 degrees C, most likely by liberating the SCAP-SREBP complex so that it can move to the Golgi for processing. These results indicate that the cholesterol synthesizing machinery is down-regulated at low temperatures, and points to the transport of the SCAP-SREBP complex to the Golgi as the specific down-regulated step.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homocysteine Induces Heme Oxygenase-1 Expression via Transcription Factor Nrf2 Activation in HepG2 Cells

Background: Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcripti...

متن کامل

Antimicrobial peptide Brevinin-2R induces the secretion of a pro-inflammatory cytokine in HepG2 cells

Introduction: Antimicrobial peptides as the body's defense strategy play an important role in resistance against infection of microorganism. These peptides are able to modulate the immune and inflammatory processes through the production of defensive molecules. Therefore, the modulatory effects of Brevinin-2R, an antimicrobial peptide extracted from the skin of the frog (Rana ridibunda), was ev...

متن کامل

Sterol regulatory element-binding protein-2 interacts with hepatocyte nuclear factor-4 to enhance sterol isomerase gene expression in hepatocytes.

In the course of an effort to identify unknown targets genes for sterol regulatory element-binding proteins (SREBPs) by PCR, the gene for ATP citrate-lyase was determined to be one such gene. (Sato, R., Okamoto, A., Inoue, J., Miyamoto, W., Sakai, Y., Emoto, N., Shimano, H., and Maeda, M. (2000) J. Biol. Chem. 275, 12497-12502). We here report that gene expression of sterol Delta8-isomerase (SI...

متن کامل

Evaluation the effect of analog curcumin on the display and expression of SIRT1 and FAS genes in HepG2 fatty cells.

Abstract: Background: Non-alcoholic fatty liver is a disease that will lead to liver cirrhosis if not treated. Curcumin is the active substance of the rhizome of the turmeric plant, which has antioxidant, anti-inflammatory, antimicrobial, etc. properties. In the present study, the effects of curcumin analogue on the expression of SIRT1 and FAS genes and the accumulation of triglycerides in f...

متن کامل

Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis.

The tools of somatic cell genetics have been instrumental in unraveling the pathway by which sterol regulatory element-binding proteins (SREBPs) control lipid metabolism in animal cells. SREBPs are membrane-bound transcription factors that enhance the synthesis and uptake of cholesterol and fatty acids. The activities of the SREBPs are controlled by the cholesterol content of cells through feed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of lipid research

دوره 44 8  شماره 

صفحات  -

تاریخ انتشار 2003